Overview
The Sierpinski Triangle activity illustrates the fundamental principles of fractals – how a pattern can repeat again and again at different scales and how this complex shape can be formed by simple repetition. Each student will make their own fractal triangle composed of smaller and smaller triangles. Next, students will cut out their personalized triangles and assemble them all into a larger fractal pattern that replicates the same shape.

Appropriate for: grades K – 12, college and adults

Objectives
- To create a complex pattern by repeating a simple process over and over again
- To compose, describe and identify shapes and patterns
- To analyze and compare shapes according to properties of their lines and angles
- To use operations to explain patterns in arithmetic and create mathematical models
- To attend to precision
- To exhibit teamwork when using each student’s individual fractal design to make a larger product
- To produce a piece of art that expresses each student’s individuality
- To use appropriate tools strategically

Materials
- Markers, colored pencils or crayons
- Scissors
- Ruler/straight edge (optional)
- Ruler and protractor for older grades
- Triangle worksheet
Common Core Standards for Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Standard</th>
<th>Grade</th>
<th>Code</th>
<th>Standard</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Counting and Cardinality</td>
<td>K</td>
<td>G</td>
<td>Geometry</td>
<td>K – 8</td>
</tr>
<tr>
<td>NBT</td>
<td>Number and Operations in Base Ten</td>
<td>K, 1</td>
<td>NS</td>
<td>Number System</td>
<td>6, 7</td>
</tr>
<tr>
<td>OA</td>
<td>Operations and Algebraic Thinking</td>
<td>K – 5</td>
<td>RP</td>
<td>Ratios and Proportional</td>
<td>6, 7</td>
</tr>
<tr>
<td>MD</td>
<td>Measurement and Data</td>
<td>K – 5</td>
<td>SP</td>
<td>Statistics and Probability</td>
<td>6</td>
</tr>
</tbody>
</table>

Common Core Standards for English Language Arts

<table>
<thead>
<tr>
<th>Code</th>
<th>Standard</th>
<th>Grades K – 5</th>
<th>Grades 6 – 8</th>
<th>Grades 9 – 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>Reading: Literature</td>
<td>1, 4, 7, 10</td>
<td>1, 4, 7, 10</td>
<td>1, 4, 10</td>
</tr>
<tr>
<td>RI</td>
<td>Reading: Informational Text</td>
<td>1, 3, 4, 7, 10</td>
<td>1, 3, 4, 7, 10</td>
<td>1, 3, 4, 10</td>
</tr>
<tr>
<td>FS</td>
<td>Foundational Skills</td>
<td>1, 2, 3 for grades K – 1; 3 and 4 for grades 2 – 5</td>
<td>None available</td>
<td>None available</td>
</tr>
<tr>
<td>W</td>
<td>Writing</td>
<td>2, 3, 8; 4 for grades 3 – 5</td>
<td>2, 3, 4</td>
<td>2, 3, 4, 9</td>
</tr>
<tr>
<td>SL</td>
<td>Speaking and Listening</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>L</td>
<td>Language</td>
<td>1, 4, 6; 3 for grades 2 – 5</td>
<td>1, 3, 4, 6</td>
<td>1, 3, 4, 6</td>
</tr>
<tr>
<td>RST</td>
<td>Science and Technical Subjects</td>
<td>None available</td>
<td>1, 3, 4, 6, 7, 10</td>
<td>2, 3, 4, 6, 7, 10</td>
</tr>
</tbody>
</table>
Instructions
Print out one activity template (page 5) for each student.

1.) Provide markers, colored pencils or crayons and instruct students to connect the midpoints of the existing triangle to make a new, downward-facing triangle. Have students color in the downward-facing triangle only. This will leave three upward-facing triangles remaining, each of which is like the original, but half the width.

2) Next, have students place dots at the midpoints of each of the sides of each of the three smaller triangles. Connect those midpoints to make three smaller downward facing triangles, and then color in these triangles.

3 and 4) Repeat the same process again for at least three iterations total.

Rubric for evaluation: They must get to at least step 2. Does their triangle exhibit self-similarity, or is it just lots of copies of one size of triangle? How accurate are their midpoints? Allow for creative expression - each student’s fractal is an individual artwork - but they must be fractal.
When students are done, each student should cut out their triangle and then join their triangles in groups to form a larger version of the same shape! Nine, 27, or 81 triangles work best.

“Triangle handout” is the companion worksheet for this activity.
You are about to build the world’s largest fractal triangle, made out of 2,187 individual triangles.

To do so, you must lay down masking tape on the floor to draw the outlines, so you know where to put all the triangles.

The entire triangle is 96 feet on a side. Each of the smallest triangles in the diagram is 12 feet wide.

How much masking tape will you need?
Fractal Triangles

Instructions

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles you have.

Connect these three dots that are in the middle of each line. This is called the midpoint of the line. Find the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Join it with others to make groups of three, nine, 27 or more triangles that make the same shape but larger.

When you decide you're done, cut out the big triangle, flip it over, and write your name and school on the back.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line. Find the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect these three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?

Fractals are never-ending patterns, and you could keep doing this for a long time... forever. Fractals are SMART: Science, Math & Art!

www.FractalFoundation.org

FRACTALS ARE SMART:
Science, Math & Art!

Copyright 2015 Fractal Foundation, all rights reserved.

Before doing anything to your triangle, fill in the table with the number of right-side-up triangles and connect these three dots of these three sides of the three triangles that make the same shape but larger.

Connect the three dots that are in the middle of each line. This is called the midpoint of the line.

Now how many right-side-up triangles do you have?