1. First, we’re going to figure out the Fibonacci sequence. Fill out the blanks below:

\[
0 + 1 = \\
\downarrow \downarrow\\
1 + _ = \\
\downarrow \downarrow\\
_ + _ = \\
_ + _ = \\
_ + _ = \\
_ + _ = \\
_ + _ = \\
_ + _ = \\
_ + _ = \\
_ + _ = \\
\]

2. List each number after the equal sign: 1 2 _ _ _ _ _ _ _ _

3. Let’s do some graphing to see more about how this pattern makes a spiral!

On the graph paper at the end of this handout, there is square that is 1 x 1.

a. What’s the first number of the Fibonacci sequence? _____
 Right above the square that is drawn, draw another 1 x 1 square.

b. What’s the second number in the Fibonacci sequence? _____
 Directly to the left of the two existing squares, draw in a 2 x 2 square.
Fibonacci Sequence and Fractal Spirals

c. What’s the next number in the Fibonacci sequence? _____
Right **below** your existing squares, draw a 3 x 3 square.

d. What’s the next number in the Fibonacci sequence? _____
To the **right** of all that you’ve drawn, draw a 5 x 5 square.

e. What’s the next number in the Fibonacci sequence? _____
Above all that you’ve drawn, draw an 8 x 8 square.

f. What’s the next number? _____
To the **left** of all that you’ve drawn, draw a 13 x 13 square.

g. What’s the next number? _____
Below all that you’ve drawn, draw a 21 x 21 square.

... To the right of that would be the next square, but we’ve run out of room.

4. Now let’s see how we can make a pattern out of these squares.

In the original square, draw a line from the bottom left to the top right.
On the next 1 x 1 square, continue that line across your square, from the bottom right to the top left.
Cross the 2 x 2 square from the top right to bottom left. Cross the 3 x 3 square from the top left to bottom right. Cross the 5 x 5 square from bottom left to top right. Cross the 8 x 8 square from bottom right to top left. Continue the line across the 13 x 13 square and the 21 x 21 square, wrapping up with a line that would go through the 34 x 34 square.

5. What pattern do you get?

6. Where do we find spirals naturally?

7. Count the number of things that make up a spiral on a pineapple or a pine cone or the number of petals on a flower or number of spirals on a broccoli or seeds of a sunflower.

They all occur in Fibonacci numbers! Nature is full of mathematical patterns! Amazing, huh? See what other cool patterns you can figure out in nature.
Fibonacci Sequence and Fractal Spirals

Fractals are SMART: Science, Math & Art!
www.FractalFoundation.org
Copyright 2015 Fractal Foundation, all rights reserved